利用技術

γ線スペクトル解析による天然ウランと劣化ウランの判別 - 核燃料物質管理への応用を中心として-

富山医科薬科大学放射性同位元素実験施設

E 司 美樹, 濱 島靖 典¹, 高 塚 清 文², 朴 木 宏,

中島智子,近藤 隆³,中西 孝¹

(1金沢大学理学部化学科,2富山大学放射性同位元素総合実験室,3富山医科薬科大学医学部)

1 はじめに

天然ウランとは、²³⁵Uの同位体存在比が天然にお ける²³⁵Uの同位体存在比(0.72%)と同一のものをい い、²³⁵Uの同位体存在比が0.72%未満のものを劣化 ウランという。核燃料物質を管理する場合、天然ウ ランと劣化ウランを区別することが望ましいが、古 い試薬の中には、天然ウランか劣化ウランかを明記 していないものが多い。

あるウラン試料が天然ウランか劣化ウランかを判 別する方法の1つとして,天然ウラン標品との γ 線 スペクトルの比較があげられる。この方法では,天 然ウランであることが認承された比較標準試薬が必 要であり,しかも,ウラン鉱物でなく試薬でなくて はならない。ウラン鉱物には²³⁸U系列の²²⁶Raが含 まれるため,²²⁶Raから放出される186.10keVの γ 線 が,²³⁵Uから放出される185.72keVの γ 線の検出を 妨害するからである¹⁾。さらに,この方法では,天 然ウラン標準(試薬)があっても,形状や材質が異な る容器に入っているウラン化合物に対しては, γ 線 の自己吸収,容器による吸収が検体ごとに異なるの で,その影響を補正する必要がある。

本研究では、ウラン標準試薬を使わずに、ウラン 試薬のγ線スペクトルを容器に入ったまま測定,解 析することによって,天然ウランか劣化ウランを簡 便に判別する方法を考案したので報告する。

2 方法

2.1 方法の原理

本法の原理は、「同一試料に放射能が等しい核種が 複数存在する場合、放出されるγ線の光電ピークの 計数率())をそのγ線の放出率(B)で割 った値(R/B)は、γ線エネルギーの関数として表す ことができる」ことに基づいている。天然ウランで は、 238 U、 234 Th、 234m Paの放射能が等しく、また 238 U/ 235 Uの放射能比は21.72である。したがって、天 然ウランでは、 235 Uの*R/B*値を21.72倍した値は、 234 Thと 234m Paの*R/B*値を γ 線エネルギーに対してプ ロットした曲線上に載るのに対し、劣化ウランでは 曲線の下に位置する。この原理を利用すればウラン 標準試薬を使わなくても天然ウランと劣化ウランの 判別が可能となる。

- 2.2 方法論
- γ線スペクトルの光電ピーク計数率(*R*)と壊変率 (*A*)の間には次の関係が成り立つ²⁾。

 $R = ABE_{\rm s}GE_{\rm D}\cdots\cdots\cdots(1)$

- ここで、B:壊変あたりの光子放出数(放出率)
 - Es:γ線の試料及び容器透過効率
 - G:幾何効率
 - E_D:検出器の光電ピーク検出効率
- である。式(1)は次のように表すことができる。 *R/B = AE*_s*GE*_D(2)

1つの試料に含まれる一種類の核種が放出する複 数の γ 線に着目すると、一定の測定条件下では、AとGは共通、一定で、 E_s と E_D は γ 線エネルギーの 関数となるので、R/Bは γ 線エネルギーの関数とし て表すことができる。すなわち、 γ 線エネルギーに 対してR/B値をグラフにプロットすれば滑らかな曲 線を描くことができる。

さらに、1つの試料に含まれる核種 N_l (l = 1, 2, 3, ...)の壊変率を A_l とし、核種 N_l から放出される γ 線を γ_{lm} (m = 1, 2, 3, ...)、 γ_{lm} の光電ピーク計 数率を R_{lm} ,壊変あたりの光子放出数を B_{lm} とする と、式(2)は、 γ_{lm} について次のように表すことが

できる。
$$\frac{R_{lm}/B_{lm}}{A_l} = E_{\rm S}GE_{\rm D}\cdots\cdots\cdots(3)$$

 $A_1, A_2, \dots, A_l, \dots$ の比を $a_1 : a_2 : \dots : a_l : \dots と$ すると,式(3)は次のように表すことができる。ただし,kは定数である。

 $\frac{R_{lm}/B_{lm}}{a_l} = kE_{\rm S}GE_{\rm D}\cdots\cdots\cdots(4)$

1つの試料に含まれる複数の核種について、壊変 率の定量的な関係 $(a_1 : a_2 : \dots : a_l : \dots)$ がわかっ ていれば、その定量的な関係に基づいて補正した $R/B 値 ((R_{lm}/B_{lm})/a_l) は \gamma 線のエネルギーの関数とな$ り、同一曲線上にプロットすることができる。補正した <math>R/B 値が同一曲線上にプロットできない場合は、仮定した定量的な関係が実際には成り立っていないということになる。

2.3 天然ウランに含まれる核種

ウラン鉱物には²²⁶Ra が含まれており,²³⁵U から放 出されるγ線の検出を妨害するので,本研究では, ウラン試薬について検討した。ウラン元素は1789年 にKlaprothによって発見された。したがって,ウラ ン試薬は1789年以降に精製されたものとし,精製直 後のウラン試薬に含まれる放射性核種は²³⁸U,²³⁵U,²³⁴Uの天然同位 体存在比は,99.2745,0.7200,0.0055%である¹⁾。 この同位体存在比と半減期から,天然ウランに含ま れる上記3核種の放射能比を計算すると,21.72: 1:21.90となる。

表1に,²³⁸U,²³⁵U,²³⁴Uから生成する核種と,精 製から211年後の放射能をBatemanの式³⁾により計 算した結果を示す。²³⁸U系列では,1年以内に²³⁴Th, ^{234m}Pa,²³⁴Paは²³⁸Uと放射平衡に達し,²³⁸U,²³⁴Th, ^{234m}Paの放射能は等しくなる。^{234m}Paから²³⁴Paへの 分岐壊変の割合は0.13%であり,²³⁴Paの放射能は ²³⁸Uの1.3×10⁻³となる。²³⁸Uから生成する²³⁴Uの 211年後の放射能は²³⁸Uの6×10⁻⁴であり,²³⁰Thと その娘核種の放射能は無視できる値となる。

 ²³⁵U系列では、²³¹Thは2週間以内に²³⁵Uと放射平 衡に達し放射能は等しくなる。ウラン精製後211年 後の²³¹Paの放射能は²³⁵Uの4.5×10⁻³であり、天然 ウランの場合、²³⁸Uの放射能の2×10⁻⁴となる。
²²⁷Acとその娘核種の放射能は²³⁵Uの4×10⁻³(天然 ウランの場合²³⁸Uの放射能の2×10⁻⁴)以下となる。

ウラン精製から 211 年後に²³⁴U から生成する核種 と放射能の²³⁴U に対する割合は²³⁰Th が 1.9 × 10⁻³, ²²⁶Ra が 8.6 × 10⁻⁵ である。ウランが精製されてから の期間が 211 年より短い場合には,それぞれの娘核 種の放射能は表 1 の数値より小さくなる。

以上のことから、ウラン試薬に含まれる核種は、 ²³⁸U、²³⁴Th、^{234m}Pa、²³⁴Pa、²³⁵U、²³¹Th、²³⁴U、²³⁰Th であ ると考えられる。精製されてから1年以上経過した ウラン試薬では、これらの核種の中で、²³⁴Th、^{234m}Pa は²³⁸Uと放射平衡にあり、この3つの核種の壊変率 は等しい。また、天然ウランの²³⁵U/²³⁸U壊変率の比 は1/21.72である。したがって、天然ウランでは、 ²³⁴Th、^{234m}Pa、²³⁵Uの壊変率の比は1:1:1/21.72と

表1 ²³⁸U, ²³⁵U, ²³⁴Uから生成する娘核種の 半減期と211年後の放射能

親核種	娘核種	半減期 放射能			
²³⁸ U		4.468×10⁰y	×10 ⁹ y 1.0		
	²³⁴ Th	24.10d	1.0		
	^{234m} Pa	1.17m	1.0		
	²³⁴ Pa	6.70h	1.3×10⁻³		
	²³⁴ U	2.455×10⁵y	6.0×10⁻⁴		
	²³⁰ Th	7.538×10⁴y	5.8×10 ⁻⁷		
	²²⁶ Ra	1.6×10³y	1.7×10 ⁻⁸		
	²²² Rn	3.8235 d	1.7×10 ⁻⁸		
	²¹⁸ Po	3.10m	1.7×10 ⁻⁸		
	²¹⁴ Pb	26.8 m	1.7×10 ⁻⁸		
	²¹⁴ Bi	19.9m	1.7×10 ⁻⁸		
	²¹⁴ Po	164.3 <i>µ</i> s	1.7×10 ⁻⁸		
	²¹⁰ Pb	22.3y	1.1×10 ⁻⁸		
	²¹⁰ Bi	5.013d	1.1×10 ⁻⁸		
	²¹⁰ Po	138.376d	1.1×10 ⁻⁸		
²³⁵ U		7.038×10 ⁸ y	1.0		
	²³¹ Th	25.52h	1.0		
	²³¹ Pa	3.276×10⁴y	4.5×10⁻³		
	²²⁷ Ac	21.773y	3.8×10⁻³		
	²²⁷ Th	18.72d	3.8×10⁻³		
	²²³ Ra	11.435d	3.8×10⁻³		
	²¹⁹ Rn	3.96s	3.8×10⁻³		
	²¹⁵ Po	1.781ms	3.8×10⁻³		
	²¹¹ Pb	36.1 m	3.8×10⁻³		
	²¹¹ Bi	2.14m	3.8×10⁻³		
	²⁰⁷ TI	4.77 m	3.8×10⁻³		
²³⁴ U		2.455×10⁵y	1.0		
	²³⁰ Th	7.538×10⁴y	1.9×10 ⁻³		
	²²⁶ Ra	1.6×10³y	8.6×10 ⁻⁵		
	²²² Rn	3.8235d	8.6×10 ⁻⁵		
	²¹⁸ Po	3.10m	8.6×10 ⁻⁵		
	²¹⁴ Pb	26.8 m	8.6×10⁵		
	²¹⁴ Bi	19.9m	8.6×10⁵		
	²¹⁴ Po	164.3μs	8.6×10 ^{-₅}		
	²¹⁰ Pb	22.3y	6.4×10⁵		
	²¹⁰ Bi	5.013d	6.4×10 ⁻⁵		
	²¹⁰ Po	138.376d	6.4×10⁵		

なる。

2.4 データ解析

天然ウランでは、式(4)における²³⁴Th、^{234m}Paの*a* 値を1とすると、²³⁵Uの*a*値は1/21.72となる。した がって、天然ウランでは、²³⁴Th、^{234m}Paについての *R/B*値と、²³⁵Uについての*R/B*値を21.72倍した値を γ 線のエネルギーに対してプロットすると、同一曲 線上に載るはずである。劣化ウランでは、²³⁵U/²³⁸U 壊変率の比は、1/21.72より小さいので、²³⁵Uについ ての*R/B*値を21.72倍した値をプロットすると、 ²³⁴Thと^{234m}Paについてプロットした点を結ぶ曲線の 下側に位置することになる。

本法で利用する γ 線のエネルギーと放出率,及び ウラン試薬に含まれる 8 核種から放出される γ 線の うち,それらを妨害する可能性のあるものを表2に 示した¹⁾。本法で利用する γ 線を妨害する可能性の ある γ 線の放出率(表2)と,その γ 線を放出する核 種の放射能(表1)を考慮すると,妨害 γ 線は,本法 で利用する γ 線の光電ピーク計数率に実際上影響を 及ぼさないと考えられる。

表 2 左側に示した γ 線について,横軸に γ 線エネ ルギー,縦軸に²³⁵Uから放出される γ 線の*R/B*値を 21.72 倍した値,及び²³⁴Th,^{234m}Paから放出される γ 線の*R/B*値を,両軸とも対数目盛でプロットした。 ²³⁴Thから放出される 92.38keV と 92.80keV の γ 線 光電ピークはスペクトル上分離できないので,*B*値 は両者の放出率を合わせ,エネルギーは平均値とし た。²³⁵Uから放出される 202.12keV と 205.31keV の γ 線についても同様に計算した。次に,²³⁴Th と ^{234m}Paから放出されるγ線についてプロットした点 にフィットする曲線を描いた。

曲線の式は、次のように $\ln(E_{\gamma})$ に関する多項式 で近似することができる。

 $\ln(R/B) = c_0 + c_1 \ln(E_{\gamma}) + c_2 \{\ln(E_{\gamma})\}^2 + \dots + c_n \{\ln(E_{\gamma})\}^n$ ここで, E_{γ} は γ 線のエネルギー, c_0 , c_1 , c_2 , …, c_n は最小二乗法で求めた係数である。ここでは, 境界 値を 180 keV として, 境界値より低エネルギー側を 二次関数, 高エネルギー側を一次関数で近似し, 2 つの関数が境界値の前後で連続的に変化するように 近似した。

曲線上の $E_{\gamma} = 185.72 \text{ keV} O R/B 値を R/B (N) とす$ ると、この値は、試料が天然ウランである場合の²³⁵U $から放出される 185.72 keV の<math>\gamma$ 線の R/B 値を 21.72 倍 した値に相当する。一方、試料の測定で得られた、 ²³⁵U の 185.72 keV γ 線から得られた R/B 値を 21.72 倍 した値を R/B (S) ± s (試料の²³⁵U の 185.72 keV γ 線の R 値の標準偏差を σ とすると、 $s = 21.72 \times \sigma/B$)とする。 $\{R/B(S) - s\} \leq R/B(N) \leq \{R/B(S) + s\} O$ 場合、その 試料は天然ウランと判別し、 $\{R/B(S) + s\} < R/B(N)$ の場合、劣化ウランと判別した。

R/B(S) = *R/B*(N)のときの²³⁵U同位体存在比を 0.72%として、{*R/B*(S)}/{*R/B*(N)}の値より、試料 中の²³⁵U同位体存在比を推定することもできる。

2.5 ウラン試料のγ線スペクトロメトリー

ウラン試料は、容器に入ったままで γ 線スペクト ルを測定した。検出器は、n型同軸型高純度 Ge 半導 体検出器 (不感層厚 0.3 μ m,測定エネルギー範囲 5 keV ~ 10 MeV, EG&G Ortec, GMX-23195, Oak Ridge,

表 2 スペクトル解析に利用するγ線とウラン試薬に含まれる核種からの妨害γ線

核種	利用するγ線						
	 エネルギー(keV)・放出率(%)		核種	・エネルギー(keV	′)・放出率	(%)	
²³⁴ Th	63.29 (4.84)	^{234m} Pa	62.70	(1.2×10 ⁻³)	²³⁴ Pa	62.70	(1.5)
	92.38 (2.81)	²³¹ Th	63.86	(0.023)	²³⁵ U	64.37	(0.01)
	92.80 (2.77)	²³¹ Th	93.02	(0.045)			
²³⁵ U	143.76 (10.96)	²³⁰ Th	143.87	(0.0488)	²³⁴ Pa	143.78	(0.32)
	163.33 (5.08)	²³¹ Th	163.10	(0.155)	²³⁴ Pa	164.94	(0.054)
	185.72 (57.2)	²³¹ Th	183.5	(0.0329)	^{234m} Pa	184.7	(1.7×10 ⁻³)
	202.11 (1.08)	²³⁰ Th	186.05	(8.8×10 ⁻³)	²³⁴ Pa	186.15	(1.76)
	205.31 (5.01)	²³¹ Th	188.76	(3.2×10 ⁻³)			
		^{234m} Pa	203.12	(1.02×10 ⁻³)	²³⁴ Pa	203.12	(1.23)
		²³⁰ Th	205.1	(5.2×10 ⁻⁶)			
^{234m} Pa	258.26 (0.0728)	²³⁴ Pa	257.2	(0.05)			
	766.36 (0.294)	²³¹ Pa	766.4	(0.07)			
	1001.03 (0.837)						

TN)を用い,4096ch 波高分析器 (Seiko EG&G, MCA7700,松戸)で分析した。検出器の大きさは直径 55.0mm×高さ56.3mmである。試料の測定と解析に は,DS-P200/W32 (Gamma Studio, Seiko EG&G)ソフ トウェアを用いた。試料は,サムコインシデンスを 避けるため,検出器の先端から10cmの距離で測定し た⁴⁾。検出器のしゃへい体は鉛厚10cm,カドミウム 厚2mm,銅厚20mm,アクリル樹脂厚5mmであっ た。また,しゃへい体の内寸法は300mm (奥行)× 300mm (幅)×670mm (高さ)であった。

3 結果と考察

本法で解析に利用した²³⁴Th, ^{234m}Pa, ²³⁵Uのy線 を表2の左側に示した。²³⁴Th, ²³⁴mPaと放射平衡に ある²³⁸Uからは49.6 keVのγ線が放出されるが,放 出率が7.5×10-4と小さく、自己吸収も大きいため、 利用しなかった¹⁾。ウラン試薬に含まれる核種から 放出されるγ線のうち、本法で利用したγ線の検出 を妨害する可能性のあるγ線を表2の右側に示し た。表2に示した妨害γ線の放出率とそれらを放出 する核種の放射能(表1)を考慮すると、妨害γ線の 光電ピーク計数率は、本法で利用するγ線の光電ピ ーク計数率に比べ十分に小さいと考えられる。妨害 ピークの中で、本法に最も大きな影響を及ぼすのは、 ²³¹Thの163.10keVγ線であるが,²³⁵Uの163.33keV γ線の光電ピーク計数率の約3%に相当する。ウラ ン試薬のスペクトルにはX線の光電ピークもみられ るが, X線の中にはα線やβ線によって励起された ウラン原子からのけい光X線も含まれるため、本法 にはX線を利用しなかった⁵⁾。

図1に、ウラン鉱物並びに、表示や経歴から天然 あるいは劣化ウランであることが確実なウラン試薬 のスペクトルの例を示した。ウラン鉱物のスペクト ルでは、²³⁵U(185.72keV)と²²⁶Ra(186.10keV)のγ線 光電ピークが 186 keV の位置に重なっていると考え られる。²³⁸U 系列の²¹⁴Pb,²¹⁴Bi,²³⁵U 系列の²²⁷Th の γ線もみられた(図1(a)及び(a'))。

4.0gのウランを含むガラス容器入りのウラン試薬 を、検出器から10cmの距離で18,000秒測定した場 合、²¹⁴Pbの351.92keV γ線(放出率0.358)及び²¹⁴Bi の609.31keV γ線(放出率0.488)は検出されなかっ た。このことから、²¹⁴Pb、²¹⁴Biと放射平衡にある ²²⁶Raの186.10keV γ線(放出率0.0350)は、²³⁵Uの 185.72keV γ線を妨害しないと考えられる(表1)。 また、劣化ウラン試薬(図1(c),(c'))では、天然 ウラン試薬(図1(b),(b'))に比べ、²³⁴Th、²³⁴Paの γ線光電ピークに対する²³⁵Uのγ線光電ピークの比 が小さいことがわかる。

本法では、サムコインシデンスの影響を最小にす るため、試料を検出器から10cmの位置で測定した。 その結果、4.0gのウランを含む試薬を検出器から 10cmの位置でlive time 18,000秒(dead time, 0.77%) 測定した場合、表2の左側に示す同一核種から放出 される2種類以上の γ 線のサムピークは検出されな かった。一方、同一試料を検出器の上部に置いて live time 1,800秒(dead time, 7.6%)測定した場合に は、²³⁵Uの163.33keVと205.31keVの γ 線のエネル ギーを加えた位置に、それぞれのピークの約2%に 相当するサムピークが検出された。

図2に天然ウランであることが確認された試料か ら得られた曲線を示した。図2から明らかなように, 天然ウランでは、²³⁴Th、²³⁵U、^{234m}Paのγ線について プロットした点が同一曲線上に載った。一方,図3 には、劣化ウランであると判別された試料から得ら れたプロットの例を示した。劣化ウランの場合には、 ²³⁵Uのγ線についてプロットした点が²³⁴Th と^{234m}Pa から得られた曲線の下側に位置した。

本法の精度,つまり²³⁵Uの存在比が何%以下のも のを確実に劣化ウランと判別できるかについて,次 のように検討した。

- ²³⁴Th と^{234m}Paのγ線から得られた (R+σ)/B値 (σはRの標準偏差)をγ線のエネルギーに対して プロットした点にフィットする曲線の185.72keV の位置の*R/B*値を*R/B*(N)_uとする。
- (2) (1)と同様に (R σ) /B 値をもとにプロットした 点にフィットする曲線の 185.72 keV の位置の R/B 値を R/B (N)₁とする。
- (3) *R*/B(N)_uは,試料が天然ウラン(²³⁵Uの同位体存 在比0.72%)である場合の,²³⁵Uの185.72keV γ 線から得られる *R*/B 値を21.72 倍した値の上限, *R*/B(N)₁は下限と考えることができる。
- (4) あるウラン試料の (*R/B*(S) + s) 値が *R/B*(N)₁値 より小さい場合,その試料は劣化ウランと判別す ることができる。

このように検討を行った結果,4.0gのウランを含 む試料を18,000秒測定した場合,²³⁵Uの同位体存在 比が0.68%未満のものを劣化ウランと判別できるこ とがわかった。

富山医科薬科大学では、本法によって、16 試料の うち、3 試料を天然ウランと判別することができた。 本法は、²³⁵Uの同位体存在比が天然ウランに近い劣 化ウランを天然ウランと判別してしまう可能性があ

図1 天然ウラン及び劣化ウランのγ線スペクトル
(a), (a'):天然ウラン鉱物
(b), (b'):天然ウラン試薬
(c), (c'):劣化ウラン試薬

図 2 天然ウラン試薬のR/B曲線 * $R/Bdi, \gamma$ 線光電ピーク計数率(R)を放出率(B)で割った 値,²³⁵Uについては、(γ 線光電ピーク計数率×21.72)を放 出率(B)で割った値をプロットした。曲線は、 $E_{\gamma} \leq 180$ keV では $\ln(R/B) = -17.9098 + 8.7758 \ln(E_{\gamma}) - 0.92915 {\ln(E_{\gamma})}^2$, $E_{\gamma} > 180$ keVでは $\ln(R/B) = 7.1462 - 0.87419 \ln(E_{\gamma})$ で近似 した。 E_{γ} は γ 線のエネルギーを示す。

り,天然ウラン標準試薬とのスペクトルの比較や質 量分析法に比べ,精度の点で劣ると思われるが,標 準試薬が入手できない場合や,特別な装置を必要と せずに,ウラン試薬の劣化の程度を評価できるとい う点で有用である。

参考文献

1) R.B. Firestone, V.S. Shirley: Table of Isotopes, 8th

図3 劣化ウラン試薬のR/B曲線 **R/Bは、 γ 線光電ピーク計数率(R)を放出率(B)で割った 値、²³⁵Uについては、(γ 線光電ピーク計数率×21.72)を放 出率(B)で割った値をプロットした。曲線は、 $E_{\gamma} \leq 180$ keV では $\ln(R/B) = -37.2734 + 17.4178 \ln(E_{\gamma}) - 1.7482 \{\ln(E_{\gamma})\}^{2},$ $E_{\gamma} > 180$ keVでは $\ln(R/B) = 9.8709 - 0.73924 \ln(E_{\gamma})$ で近似 した。 E_{γ} は γ 線のエネルギーを示す。

Edition. Vol. 2, Wiley, New York (1996)

- 2) G. Gilmore, J. Hemingway: Practical Gamma-ray Spectrometry, 137-138, Wiley, Chichester (1995)
- 日本アイソトープ協会編:新ラジオアイソトープ 講義と実習,89-90,丸善,東京(1989)
- 4) G. Gilmore, J. Hemingway: Practical Gamma-ray Spectrometry, 148-159, Wiley, Chichester (1995)
- 5) P.J. Early, M.A. Razzak and D.B. Sodee: Textbook of Nuclear Medicine Technology, 2nd Edition, 36-